
Reinforcement Learning in Garbage Collection

Background

• The balanced collector amortizes the cost of global garbage 
collection across many collection pauses, reducing the effect of 
whole heap collection times.

• Each pause should attempt to perform a self contained collection, 
returning free memory back to the application for immediate reuse.

• The balanced collector dynamically selects heap areas to collect in 
order to maximize the return-on-investment of time and effort. The set 
of regions selected for garbage collection is called a collection set.

• By manipulating the collection set we can manipulate performance of 
balanced collector.

Problem Formulation

• The balanced collector leverages the observation that recently 
allocated objects are likely to quickly become garbage by adding 
regions with younger objects to the collection set more frequently.

• As various applications are allocating memory differently, optimal 
rules to pick a collection set can be determined case-by-case.

• Questions the project aims to answer:

• “Objects die young” — is “young” the same for all applications?

• Can these allocation differences be noticed and leaned?

• Can we use it to improve performance of garbage collection?

Why reinforcement learning?

• Relevant properties of reinforcement learning:

• A model of the environment is known, but an analytical solution is
not available — it is easier to find collector parameters by trial and
error, than to analyze application’s code.

• Interaction with environment happens in discrete time steps —
collections are periodic, one collection is one step.

• The only way to collect information about the environment is by
interacting with it — the only way to know if collection is effective
is to actually perform it.

Intended design

• Model is probabilistic — heap regions are selected by chance,
depending on age.

• Probability is described by function P(age). The function has few
parameters. Changing these parameters reshapes function and thus
influences distribution of regions in final collection set.

• Parameters are discretized to create a checker-like world that
algorithm can travel and explore.

• The process of learning is formulated as Markov decision process
(MDP) where sets of parameters are states and moving between them
are the actions the learning algorithm can take.

• Learning algorithm tries different parameters to reshape the P(age)
function. On each collection, algorithm has a chance a try one set of
parameters.

• Ratio retrieved_memory / allocated_memory is used as feedback, i.e.
reinforcement to give the algorithm an idea if last try was good or bad.

• Example: Algorithm is checking different sets of parameters one by
one and gathering feedback. Type of P(age) function is one of many
possible.

• After some time of exploration, algorithm will be able to generalize
obtained knowledge into a policy — understanding of what set of
parameters is more promising.

Flexibility and variations

• Some element of the model can be modified to fine tune it:

• By changing how continuous parameters are discretized, we can
change the size of the world to be explored, thus we can balance
between accuracy and exploration time.

• General type of the probability function has be set in advance.
Different types can have different performance.
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